powered by
Circurlar correlations between two circular variables.
circ.cor1(theta, phi, rads = FALSE)circ.cor2(theta, phi, rads = FALSE)
circ.cor2(theta, phi, rads = FALSE)
The first cirular variable.
The other cirular variable.
If the data are expressed in rads, then this should be TRUE. If the data are in degrees, then this is FALSE.
A vector including:
The value of the correlation coefficient.
The p-value of the zero correlation hypothesis testing.
circ.cor1: Correlation for circular variables using the cosinus and sinus formula of Jammaladaka and SenGupta (1988).
circ.cor2: Correlation for circular variables using the cosinus and sinus formula of Mardia and Jupp (2000).
Jammalamadaka, R. S. and Sengupta, A. (2001). Topics in circular statistics. World Scientific.
Jammalamadaka, S. R. and Sarma, Y. R. (1988) . A correlation coefficient for angular variables. Statistical Theory and Data Analysis, 2:349--364.
Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.
circlin.cor, circ.cor2, spml.reg
# NOT RUN { y <- runif(50, 0, 2 * pi) x <- runif(50, 0, 2 * pi) circ.cor1(x, y, rads = TRUE) circ.cor2(x, y, rads = TRUE) # }
Run the code above in your browser using DataLab